Crystal Structure of a SIR2 Homolog–NAD Complex

نویسندگان

  • Jinrong Min
  • Joseph Landry
  • Rolf Sternglanz
  • Rui-Ming Xu
چکیده

The SIR2 protein family comprises a novel class of nicotinamide-adenine dinucleotide (NAD)-dependent protein deacetylases that function in transcriptional silencing, DNA repair, and life-span extension in Saccharomyces cerevisiae. Two crystal structures of a SIR2 homolog from Archaeoglobus fulgidus complexed with NAD have been determined at 2.1 A and 2.4 A resolutions. The structures reveal that the protein consists of a large domain having a Rossmann fold and a small domain containing a three-stranded zinc ribbon motif. NAD is bound in a pocket between the two domains. A distinct mode of NAD binding and an unusual configuration of the zinc ribbon motif are observed. The structures also provide important insights into the catalytic mechanism of NAD-dependent protein deacetylation by this family of enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical nature of intermolecular interactions inside Sir2 homolog active site: molecular dynamics and ab initio study

In the present study, we analyze the interactions of NAD+-dependent deacetylase (Sir2 homolog yeast Hst2) with carba-nicotinamide-adenine-dinucleotide (ADP-HPD). For the Sir2 homolog, a yeast Hst2 docking procedure was applied. The structure of the protein-ADP-HPD complex obtained during the docking procedure was used as a starting point for molecular dynamics simulation. The intermolecular int...

متن کامل

Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases.

The yeast Sir2 (silent information regulator-2) protein functions as an NAD(+)-dependent histone deacetylase to silence gene expression from the mating-type locus, tolomeres and rDNA and also promotes longevity and genome stability in response to calorie restriction. Homologues of yeast Sir2 have been identified in the three domains of bacteria, archaea and eukaryotes; in mammalian cells, Sir2 ...

متن کامل

Human Sir2 and the 'silencing' of p53 activity.

Members of the evolutionarily conserved silent information regulator 2 (Sir2) protein family are nicotinamide adenine dinucleotide (NAD(+))-dependent histone deacetylases. In yeast, the founding Sir2 protein is known to function in transcriptional silencing processes through the deacetylation of histones H3 and H4, thus setting up a repressive chromatin structure. Yeast and Caenorhabditis elega...

متن کامل

Structural basis for the NAD-dependent deacetylase mechanism of Sir2.

The NAD-dependent histone/protein deacetylase activity of Sir2 (silent information regulator 2) accounts for its diverse biological roles including gene silencing, DNA damage repair, cell cycle regulation, and life span extension. We provide crystallographic evidence that 2'-O-acetyl ADP-ribose is the reaction product that is formed at the active site of Sir2 from the 2.6-A co-crystal structure...

متن کامل

The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation.

The conserved Sir2 family of proteins has protein deacetylase activity that is dependent on NAD (the oxidized form of nicotinamide adenine dinucleotide). Although histones are one likely target for the enzymatic activity of eukaryotic Sir2 proteins, little is known about the substrates and roles of prokaryotic Sir2 homologs. We reveal that an archaeal Sir2 homolog interacts specifically with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2001